
Storage and Indexing

1



Overview
• We covered storage of unstructured files in 

HDFS
§ Partition into blocks
§ Replicate to data nodes
• This lecture will cover the storage of 

structured and semi-structured data
§ Row vs column formats
§ Data-aware partitioning
§ Indexing in big data
§ Big-data-specific file formats

2



Challenges
• Big-data applications typically scan a 

very large file
• In-situ processing, i.e., no separate data 

ingestion process
• Need to work efficiently with raw files in 

common formats

3



Row-oriented Stores

• CSV and JSON formats are examples of 
traditional row-oriented data formats
• Discussion questions:
§ How schema is stored in each one?
§ How flexible is each one for adding 

additional fields?
4

Field 1Row Field 2 Field 3 …



Traditional Column Stores

5

ID:intHeader Name:string Email:string

Column1 1564 1567 1568 1569 1572 …

Column2 Paul Xu Jyeshta Nora Alex …

Column3 paul@gmail.com xu@163.com nil

alex@live.com

nil



Pros/Cons of Column Formats
• Pros
§ Faster projection
§ Column compression
§ Efficient aggregation
• Cons
§ Not extensible. Cannot easily add more 

fields
§ Slower when combining multiple columns
§ Slower joins

6



Partitioned Column Format
• Used in most big-data key-value stores
• Aware of block partitioning in 

distributed file systems
• Uses row partitioning to group records 

together
§ Typically based on size
• Uses column partitioning to group 

relevant columns
§ Typically based on user-provided logic

7



Partitioned Column Format

8

ID Name ID Email



9

Indexing in Big Data



Indexing
• A means for speeding up some queries
• Can help avoiding full scans
• Traditional DBMS indexes
§ B+-tree
§ R-tree
§ Hash indexes
§ Bitmap indexes

• Drawback of traditional indexes
§ Existing implementations cannot scale to big 

data
§ Use random reads/writes not supported in 

HDFS
10



Clustered/Unclustered Indexes
• Clustered indexes
§ Organize records to match the order of the index
§ Good for both point and range queries
§ Can only build one index per dataset

• Unclustered indexes
§ Records are kept as-is
§ Good only for point queries and very small ranges
§ Supports multiple indexes per dataset
§ Rely on random access

• Unclustered indexes are less useful in HDFS. Why?

11



Distributed Indexes

12

HDFS Blocks

Big Data

Global Index
a.k.a. Partitioning

Local Index Local Index Local Index Local Index Local Index



Hash Partitioning
• Advantages
§ Requires one scan over the data
§ Flexible on number of partitions
§ With a good hash function, provides a 

good load balance
• Drawbacks
§ Supports only point queries
§ Highly skewed key distribution will 

result in unbalanced partitions

13



Range Partitioning
• How to find partition boundaries?
• Traditionally, partition boundaries evolve as 

records are inserted
• Not possible in HDFS where random writes 

are not allowed
• A common solution
§ Sample the input data (one scan)
§ Calculate partition boundaries (driver 

machine)
§ Partition the data (one scan)

14



Dynamic Partitioning
• Very challenging in big data
• Cannot modify existing blocks
• How to insert a record into closed

ranges?
• Common solution: Log-structured 

merge-tree (LSM-tree)

15



LSM Tree

16

Master Node

Memory component

Slave Node

Disk components

Slave Node

Disk components

Slave Node

Disk components

New records

Flushed

…

Compact and merge (e.g., External merge sort)



Local Indexing
• Relatively easier
• Computed locally in each block before it 

gets written to disk
• Appended/prepended to the data block
• Given the small size of the block, it can be 

completely constructed in main-memory 
before the block is written
• Examples
§ Bloom filter
§ Sorting

17



18

Apache Parquet File Format



Apache Parquet

19

• A column format 
designed for big data
• Based on Google Dremel
• Designed for distributed 

file systems
• Supports nesting
• Language independent, 

can be processed in C++, 
Java, or other formats



Parquet Overview

20

Host URL Response Bytes Referrer

Ro
w

 G
ro

up
~1

GB
Ro

w
 G

ro
up

~1
GB

Column Chunk



Column Chunk
• A sequence of values of the same type
• In the absence of repetition and nesting, 

storing one column chunk is straight-
forward
• We can store all values as a list
• Values can be compressed or encoded 

using any of the popular method
• When compressed, each column chunk is 

further split into pages of 16KB each
• Nesting, Repetition, and Nulls , Oh My!

21



Sparse Columns

22

Phone Number Address
951-555-7777 5 Main St
Null Null
Null 10 Grand Ave
951-555-2222 null

… …

Phone Number

1

0

0

1

951-555-7777

951-555-2222

…

Address

1

0

1

0

5 Main St

10 Grand Ave

…

Sparse Column 
representation

Compact bit array 
of size N
Bits are set for 
non-null values

Only non-null values
Usually compressed



Nesting

23

Address

Street Number Street Name

5 Main St

Null Null

10 Grand Ave

Null Null

100 Null

Null Google St

Ambiguous!
How do you distinguish between the following records:
{ Phone Number: “951-555-7777”, Address: null}
{ Phone Number: “951-555-1111”, Address: {Number: null, Name: null}



Repetition

24

Phone Number
951-555-7777
951-555-3333
951-555-1111
Null
Null
951-555-2222

…

Phone Number

1

0

0

1

951-555-7777

951-555-3333

951-555-1111

951-555-2222

…

Sparse Column 
representation

Ambiguous!
How to assign values to 
records?



Nesting and Null in Parquet

25

Record Schema
message AddressBook {

required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {

required string name;
optional string phoneNumber;

}
}

Protocol Buffers definition



Examples

26

message1: {
owner: “Alex”;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message2: {
owner: null;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message3: {
owner: “Joe”;
ownerPhoneNumbers: [
“951-555-4444”, “961-555-3333”

]
}

message4: {
owner: “Olivia”;
ownerPhoneNumbers: [
“951-555-2222”

],
contacts: [{

name: “Chris”;
phoneNumber: null;

}]
}

message5: {
owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111”

]
}



Definition Level
• The nesting level at which a field is null

27

message ExampleDefinitionLevel {
optional group a {
optional group b {
optional string c;

}
}

}

Observation: If no nesting is 
involved, i.e., one level, this 
scheme falls back to the 0/1 
schema of flat data



Definition Level

28



Definition Level with Required

29

message ExampleDefinitionLevel {
optional group a {
required group b {
optional string c;

}
}

}

• When a field is required (not nullable), then 
there is one definition level that is not allowed



Repetition Level

• The level at which we should create a 
new list

30



Repetition Level
• The repetition level marks the beginning of 

lists and can be interpreted as follows:
§ 0 marks the first value of every attribute 

in each record and implies creating a new 
level1 and level2 list

§ 1 marks every new level1 list and implies 
creating a new level2 list as well.

§ 2 marks every new element in a level2 
list.

31



Repetition Level

32



AddressBook Example

33

Record Schema
message AddressBook {

required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {

required string name;
optional string phoneNumber;

}
}

Attribute Optional Max Definition level Max Repetition level

Owner No 0 (owner is required) 0 (no repetition)

Owner phone number Yes 1 1 (repeated)

Contacts.name No 1 (name is required) 1 (contacts is repeated)

Contacts.Phone number Yes 2 (phone is optional) 1 (contacts is repeated)



Example

34

DocId: 10
Links

Forward: 20
Forward: 40
Forward: 60

Name
Language

Code: ‘en-us’
Country: ‘us’

Language
Code: ‘en’

Url: ‘http://A’
Name

Url: ‘http://b’
Name

Language
Code: ‘en-gb’
Country: ‘gb’

DocId: 20
Links

Backward: 10
Backward: 30
Forward: 80

Name
Url: ‘http://C’

message Document {
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated in64 Forward; }

repeated group Name {
repeated group Language {
required string Code;
optional string Country; }

option String Url;}}



Summary
• Two orthogonal problems in big-data storage
§ File formats (row, column, or hybrid)
§ Indexing (Global and local)

• File formats
§ Row: Flexible but inefficient
§ Column: Efficient for some queries but 

inflexible
• Indexing
§ Global: Load-balanced partitioning
§ Local: Additional metadata affixed to each 

block
• Parquet: A common column format for big data

35



Further Reading
• Dremel made simple with Parquet 

[https://blog.twitter.com/engineering/e
n_us/a/2013/dremel-made-simple-with-
parquet.html]
• Apache Parquet project homepage 

[http://parquet.apache.org]
• Parquet for MapReduce (works for both 

Hadoop and Spark) 
[https://github.com/apache/parquet-
mr]

36


