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Overview
• We covered storage of unstructured files in 

HDFS
§ Partition into blocks
§ Replicate to data nodes
• This lecture will cover the storage of 

structured and semi-structured data
§ Row vs column formats
§ Data-aware partitioning
§ Indexing in big data
§ Big-data-specific file formats
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Challenges
• Big-data applications typically scan a 

very large file
• In-situ processing, i.e., no separate data 

ingestion process
• Need to work efficiently with raw files in 

common formats
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Row-oriented Stores

• CSV and JSON formats are examples of 
traditional row-oriented data formats
• Discussion questions:
§ How schema is stored in each one?
§ How flexible is each one for adding 

additional fields?
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Field 1Row Field 2 Field 3 …



Traditional Column Stores
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ID:intHeader Name:string Email:string

Column1 1564 1567 1568 1569 1572 …

Column2 Paul Xu Jyeshta Nora Alex …

Column3 paul@gmail.com xu@163.com nil

alex@live.com

nil



Pros/Cons of Column Formats
• Pros
§ Faster projection
§ Column compression
§ Efficient aggregation
• Cons
§ Not extensible. Cannot easily add more 

fields
§ Slower when combining multiple columns
§ Slower joins
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Partitioned Column Format
• Used in most big-data key-value stores
• Aware of block partitioning in 

distributed file systems
• Uses row partitioning to group records 

together
§ Typically based on size
• Uses column partitioning to group 

relevant columns
§ Typically based on user-provided logic
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Partitioned Column Format
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ID Name ID Email
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Indexing in Big Data



Indexing
• A means for speeding up some queries
• Can help avoiding full scans
• Traditional DBMS indexes
§ B+-tree
§ R-tree
§ Hash indexes
§ Bitmap indexes

• Drawback of traditional indexes
§ Existing implementations cannot scale to big 

data
§ Use random reads/writes not supported in 

HDFS
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Clustered/Unclustered Indexes
• Clustered indexes
§ Organize records to match the order of the index
§ Good for both point and range queries
§ Can only build one index per dataset

• Unclustered indexes
§ Records are kept as-is
§ Good only for point queries and very small ranges
§ Supports multiple indexes per dataset
§ Rely on random access

• Unclustered indexes are less useful in HDFS. Why?
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Distributed Indexes
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HDFS Blocks

Big Data

Global Index
a.k.a. Partitioning

Local Index Local Index Local Index Local Index Local Index



Hash Partitioning
• Advantages
§ Requires one scan over the data
§ Flexible on number of partitions
§ With a good hash function, provides a 

good load balance
• Drawbacks
§ Supports only point queries
§ Highly skewed key distribution will 

result in unbalanced partitions
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Range Partitioning
• How to find partition boundaries?
• Traditionally, partition boundaries evolve as 

records are inserted
• Not possible in HDFS where random writes 

are not allowed
• A common solution
§ Sample the input data (one scan)
§ Calculate partition boundaries (driver 

machine)
§ Partition the data (one scan)
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Dynamic Partitioning
• Very challenging in big data
• Cannot modify existing blocks
• How to insert a record into closed

ranges?
• Common solution: Log-structured 

merge-tree (LSM-tree)
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LSM Tree
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Master Node

Memory component

Slave Node

Disk components

Slave Node

Disk components

Slave Node

Disk components

New records

Flushed

…

Compact and merge (e.g., External merge sort)



Local Indexing
• Relatively easier
• Computed locally in each block before it 

gets written to disk
• Appended/prepended to the data block
• Given the small size of the block, it can be 

completely constructed in main-memory 
before the block is written
• Examples
§ Bloom filter
§ Sorting
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Apache Parquet File Format



Apache Parquet
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• A column format 
designed for big data
• Based on Google Dremel
• Designed for distributed 

file systems
• Supports nesting
• Language independent, 

can be processed in C++, 
Java, or other formats



Parquet Overview
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Column Chunk
• A sequence of values of the same type
• In the absence of repetition and nesting, 

storing one column chunk is straight-
forward
• We can store all values as a list
• Values can be compressed or encoded 

using any of the popular method
• When compressed, each column chunk is 

further split into pages of 16KB each
• Nesting, Repetition, and Nulls , Oh My!
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Sparse Columns
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Phone Number Address
951-555-7777 5 Main St
Null Null
Null 10 Grand Ave
951-555-2222 null

… …

Phone Number

1

0

0

1

951-555-7777

951-555-2222

…

Address

1

0

1

0

5 Main St

10 Grand Ave

…

Sparse Column 
representation

Compact bit array 
of size N
Bits are set for 
non-null values

Only non-null values
Usually compressed



Nesting
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Address

Street Number Street Name

5 Main St

Null Null

10 Grand Ave

Null Null

100 Null

Null Google St

Ambiguous!
How do you distinguish between the following records:
{ Phone Number: “951-555-7777”, Address: null}
{ Phone Number: “951-555-1111”, Address: {Number: null, Name: null}



Repetition
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Phone Number
951-555-7777
951-555-3333
951-555-1111
Null
Null
951-555-2222

…

Phone Number

1

0

0

1

951-555-7777

951-555-3333

951-555-1111

951-555-2222

…

Sparse Column 
representation

Ambiguous!
How to assign values to 
records?



Nesting and Null in Parquet
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Record Schema
message AddressBook {

required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {

required string name;
optional string phoneNumber;

}
}

Protocol Buffers definition



Examples
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message1: {
owner: “Alex”;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message2: {
owner: null;
ownerPhoneNumbers: [
“951-555-7777”, “961-555-9999”

],
contacts: [{

name: “Chris”;
phoneNumber: “951-555-6666”;

}]
}

message3: {
owner: “Joe”;
ownerPhoneNumbers: [
“951-555-4444”, “961-555-3333”

]
}

message4: {
owner: “Olivia”;
ownerPhoneNumbers: [
“951-555-2222”

],
contacts: [{

name: “Chris”;
phoneNumber: null;

}]
}

message5: {
owner: “Violet”;
ownerPhoneNumbers: [
“961-555-1111”

]
}



Definition Level
• The nesting level at which a field is null
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message ExampleDefinitionLevel {
optional group a {
optional group b {
optional string c;

}
}

}

Observation: If no nesting is 
involved, i.e., one level, this 
scheme falls back to the 0/1 
schema of flat data



Definition Level
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Definition Level with Required
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message ExampleDefinitionLevel {
optional group a {
required group b {
optional string c;

}
}

}

• When a field is required (not nullable), then 
there is one definition level that is not allowed



Repetition Level

• The level at which we should create a 
new list
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Repetition Level
• The repetition level marks the beginning of 

lists and can be interpreted as follows:
§ 0 marks the first value of every attribute 

in each record and implies creating a new 
level1 and level2 list

§ 1 marks every new level1 list and implies 
creating a new level2 list as well.

§ 2 marks every new element in a level2 
list.
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Repetition Level
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AddressBook Example
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Record Schema
message AddressBook {

required string owner;
repeated string ownerPhoneNumbers;
repeated group contacts {

required string name;
optional string phoneNumber;

}
}

Attribute Optional Max Definition level Max Repetition level

Owner No 0 (owner is required) 0 (no repetition)

Owner phone number Yes 1 1 (repeated)

Contacts.name No 1 (name is required) 1 (contacts is repeated)

Contacts.Phone number Yes 2 (phone is optional) 1 (contacts is repeated)



Example

34

DocId: 10
Links

Forward: 20
Forward: 40
Forward: 60

Name
Language

Code: ‘en-us’
Country: ‘us’

Language
Code: ‘en’

Url: ‘http://A’
Name

Url: ‘http://b’
Name

Language
Code: ‘en-gb’
Country: ‘gb’

DocId: 20
Links

Backward: 10
Backward: 30
Forward: 80

Name
Url: ‘http://C’

message Document {
required int64 DocId;
optional group Links {
repeated int64 Backward;
repeated in64 Forward; }

repeated group Name {
repeated group Language {
required string Code;
optional string Country; }

option String Url;}}



Summary
• Two orthogonal problems in big-data storage
§ File formats (row, column, or hybrid)
§ Indexing (Global and local)

• File formats
§ Row: Flexible but inefficient
§ Column: Efficient for some queries but 

inflexible
• Indexing
§ Global: Load-balanced partitioning
§ Local: Additional metadata affixed to each 

block
• Parquet: A common column format for big data
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Further Reading
• Dremel made simple with Parquet 

[https://blog.twitter.com/engineering/e
n_us/a/2013/dremel-made-simple-with-
parquet.html]
• Apache Parquet project homepage 

[http://parquet.apache.org]
• Parquet for MapReduce (works for both 

Hadoop and Spark) 
[https://github.com/apache/parquet-
mr]
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